metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

La-Sheng Long,^a Peng-Ju Wang,^a Xiao-Yun Chen,^a Xue-Ming Fang^a and Seik Weng Ng^b*

^aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ^bInstitute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.053 wR factor = 0.124 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

µ-Succinato-bis[aquanitrato(1,10-phenanthroline)copper(II)]

Received 12 June 2001 Accepted 25 June 2001

Online 6 July 2001

The Cu atom in the title compound, $[Cu_2(C_4H_4O_4)-(NO_3)_2(C_{12}H_8N_2)_2(H_2O)_2]$, adopts an octahedral geometry that is distorted tetragonally, as seen in the copper-water $[Cu-O\ 2.657\ (4)\ \text{Å}]$ and copper-nitrate $[Cu-O\ 2.525\ (4)\ \text{Å}]$ bonds. The water molecule bridges adjacent molecules into a linear chain, and neighboring chains are linked by hydrogen bonds into a layer structure.

Comment

Copper succinate is a Lewis acid that is capable of forming complexes with nitrogen-donor ligands. For example, it has been characterized as the bis[N-(2-hydroxyethyl)ethylenediamine)] (Pajunen & Pajunen, 1978) and diethylenetriamine (Pajunen *et al.*, 1966) adducts, and as a decahydrated 1,10-phenanthroline adduct that cocrystallizes with copper dihydroxide (Zheng *et al.*, 2000).

(I)

Molecules of μ -succinato-bis[aquanitrato(1,10-phenanthroline)copper(II)], (I), are packed such that the watercoordinated Cu atom [Cu–O_{water} = 1.984 (3) Å] at either end of the centrosymmetric molecule is water-bridged to adjacent Cu atoms [Cu–O_{water} = 2.657 (4) Å] to furnish a jagged chain that runs along the *b* axis. The donor water molecule uses one of its H atoms to form an intramolecular hydrogen bond to the double-bond carbonyl O atom [O···O = 2.551 (4) Å]. The other is used to bind to the copper-bonded O atom [Cu–O = 2.525 (4) Å] of the nitrate group [O···Oⁱ = 2.739 (5) Å; symmetry code: (i) 2 - x, -y, 1 - z] to link neighboring chains into a layer structure (Fig. 1). The geometry of the Cu atom is an octahedron that is tetragonally distorted as seen in the rather long copper–water and copper–nitrate bonds.

Experimental

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved A solution of copper nitrate hexahydrate (0.24 g, 1 mmol) in water (5 ml) was added to a mixture of 1,10-phenanthroline (0.18 g,

Figure 1

ORTEPII (Johnson, 1976) plot of the polymeric title compound at the 50% probability level. H atoms are not shown.

1 mmol) and succinic acid (0.12 g, 0.5 mmol) in a methanol–water mixture (50:50, 10 ml) to give an immediate blue solution. Blue crystals deposited from this solution after it was set aside for a week. Calculated for $C_{28}H_{24}Cu_2N_6O_{12}$: C 44.01, H 3.67, N 11.01%; found: C 43.71, H 3.95, N 10.87%.

Crystal data

-	
$[Cu_2(C_4H_4O_4)(NO_3)_2(C_{12}H_8N_2)_2-$	Z = 1
$(H_2O)_2]$	$D_x = 1.793 \text{ Mg m}^{-3}$
$M_r = 763.61$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 22
$a = 6.940(1) \text{ Å}_{-}$	reflections
b = 10.351 (2) Å	$\theta = 9-15^{\circ}$
c = 10.857 (2) Å	$\mu = 1.58 \text{ mm}^{-1}$
$\alpha = 69.72 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 81.28 \ (3)^{\circ}$	Block, blue
$\gamma = 75.75 \ (3)^{\circ}$	$0.45 \times 0.40 \times 0.20 \text{ mm}$
$V = 707.1 (2) \text{ Å}^3$	

Data collection

Enraf-Nonius CAD-4 $R_{\rm int} = 0.028$ $\theta_{\rm max} = 25.0^{\circ}$ diffractometer $h = -8 \rightarrow 0$ ω scans Absorption correction: empirical $k=-12\rightarrow 11$ via ψ scan (North et al., 1968) $l = -12 \rightarrow 12$ $T_{\rm min}=0.663,\ T_{\rm max}=0.728$ 2 standard reflections 2711 measured reflections frequency: 60 min 2486 independent reflections intensity decay: <1% 1966 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.124$ S = 1.022486 reflections 217 parameters H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0566P)^2 \\ &+ 0.027P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.925 (3)	Cu1-O1w ⁱ	2.657 (4)
Cu1-O3	2.525 (4)	Cu1-N1	2.012 (4)
Cu1–O1w	1.984 (3)	Cu1-N2	2.001 (4)
O1-Cu1-O3	86.4 (1)	O3-Cu1-N2	90.6 (2)
O1-Cu1-O1w	91.6 (1)	O1w-Cu1-N1	172.9 (2)
$O1-Cu1-O1w^{i}$	92.4 (1)	O1w-Cu1-N2	96.8 (2)
O1-Cu1-N1	89.8 (2)	$O1w-Cu1-O1w^{i}$	80.5 (1)
O1-Cu1-N2	171.2 (2)	O1w ⁱ -Cu1-N1	92.5 (1)
O3-Cu1-O1w	92.5 (1)	$O1w^i - Cu1 - N2$	91.6 (1)
$O3-Cu1-O1w^i$	172.8 (1)	N1-Cu1-N2	82.3 (2)
O3-Cu1-N1	94.6 (2)		. ,

Symmetry code: (i) 1 - x, -y, 1 - z.

Data collection: *CAD-4 VAX/PC Fortran System* (Enraf–Nonius, 1988); cell refinement: *CAD-4 VAX/PC Fortran System*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*–II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the National Science Foundation of China (grant No. 29890210), Xiamen University and the University of Malaya (F0758/2001 A) for supporting this work.

References

Enraf-Nonius (1988). CAD-4 VAX/PC Fortran System. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Software and the Operating System. Enraf-Nonius, Scientific Instruments Division, PO Box 483, 2600 AL Delft, The Netherlands.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Pajunen, A. & Pajunen, S. (1978). Cryst. Struct. Commun. 7, 63–66. Pajunen, A., Panujen, S., Kivikoski, J. & Valkonen, J. (1996). Acta Cryst. C52, 2689-2691.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zheng, Y.-Q., Sun, J. & Lin, J.-L. (2000). Z. Krist. New Cryst. Struct. 215, 533-534.